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Extraction of stride events from gait accelerometry
during treadmill walking

Ervin Sejdić, Member, IEEE, Kristin A. Lowry, Jennica Bellanca, Subashan Perera, Mark S. Redfern and Jennifer
S. Brach

Abstract—Objective: Evaluating stride events can be valuable for understanding the changes in walking due to aging and neurological
diseases. However, creating the time series necessary for this analysis can be cumbersome. In particular, finding heel contact and
toe-off events which define the gait cycles accurately are difficult. Method: We proposed a method to extract stride cycle events from
tri-axial accelerometry signals. We validated our method via data collected from 14 healthy controls, 10 participants with Parkinson’s
disease and 11 participants with peripheral neuropathy. All participants walked at self-selected comfortable and reduced speeds
on a computer-controlled treadmill. Gait accelerometry signals were captured via a tri-axial accelerometer positioned over the L3
segment of the lumbar spine. Motion capture data were also collected and served as the comparison method. Results: Our analysis
of the accelerometry data showed that the proposed methodology was able to accurately extract heel and toe contact events from
both feet. We used t-tests, ANOVA and mixed models to summarize results and make comparisons. Mean gait cycle intervals were
the same as those derived from motion capture and cycle-to-cycle variability measures were within 1.5%. Subject group differences
could be identified similarly using measures with the two methods. Conclusions: A simple tri-axial acceleromter accompanied by a
signal processing algorithm can be used to capture stride events. Clinical Impact: The proposed algorithm enables the assessment
of stride events during treadmill walking, and is the first step towards the assessment of stride events using tri-axial accelerometers
in real-life settings.

Index Terms—Gait accelerometry signals, stride intervals, signal processing, gait.

I. INTRODUCTION

WALKING is one of the most complex, yet most
practiced, motor skills [1], [2]. In general, walking

arises from complex interactions of cerebellum, the motor
cortex, basal ganglia and feedback from vestibular, visual
and peripheral receptors [3]. Nevertheless, walking consists
of repeatable movement patterns, and thus, it generally ex-
hibits a low level of variability [4], [5], [6]. Initially, it was
believed that observed stride-to-stride variations are a normal
random process, but over the years it has been shown that
stride interval time series behave more like fractal processes
[1], [3]. Depending on the neurological conditions/diseases,
previous research has shown that the properties of these fractal
processes change [7], [8]. For example, stride intervals become
more uncorrelated (random) due to aging and neurological
diseases (e.g., [9], [10], [11]) or to exposure to external cues
[12]. Lastly, stride intervals are often useful in the calculation
of other gait metrics such as harmonic ratios (e.g., [13], [14]),
which quantify the smoothness of walking by assessing step-
to-step symmetry within a single stride [14].

Even though stride interval time series are a useful clinical
tool, accurately collecting such data is rather difficult and
time consuming. A common method for capturing stride
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interval time series is using an optically-based motion capture
system (e.g., [15], [16], [17]), which utilizes reflective markers
positioned at various foot locations. The position signals
obtained via these reflective markers are then used to find
gait parameters such as heel contact and/or toe-off. However,
motion caption systems are usually very expensive, and limit
the gait analysis to laboratory settings, which do not neces-
sarily reflect the dynamic nature experienced while walking in
non-laboratory settings. To diminish the cost associated with
motion caption systems, researchers have often considered
systems based on instrumented walkways (e.g., [18], [19]).
These are portable sensor arrays typically several meters
long that allow researchers to extract multiple gait features
simultaneously. While useful, these instrumented walkways
limit the number of continuous stride intervals captured during
a typical session to maximum of 10-15 strides. Such short time
series limit the application of more advanced techniques in
order to potentially understand the effects of various diseases
on human gait.

Force sensitive resistors (also known as footswitches) are
another method used to evaluate stride-to-stride timing. These
footswitches are placed on the bottom of shoes or beneath
the insoles to capture voltage variations associated with heel
strikes and toe-offs (e.g., [20], [21], [22]). These voltage
variations are usually captured by a data logger worn by a
participant around the waist. Researchers have used a mixture
of custom-made (e.g., [23], [24], [25]) and commercially
available systems to capture these stride intervals time series,
and typical walks lasted from a few minutes (100-200 strides)
up to hour long walks (a few thousand strides). It should
be pointed out that the cost associated with these systems
is typically an order of magnitude smaller than the cost
associated with motion capture systems and/or instrumented
walkways.
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The implementation of force sensitive resistors to capture
stride interval time series has enabled the study of human gait
in more realistic settings and for a smaller cost. However, such
systems are prone to several drawbacks. First, a minimum
of four sensors are required in order to study heel strikes
and toe-offs, as sensors need to be placed on heels and toes
of each foot. Second, these sensors usually require tethered
connections to a data logger, which can interfere with typical
walking patterns of participants, especially when dealing with
older adults and/or participants suffering from neurological
diseases. Third, researchers and clinicians have often reported
a low durability of these sensors (e.g., sensors would break
during data collections), which caused data losses and the
inability to properly investigate gait events.

To avoid these disadvantages associated with force sensitive
resistors, previous contributions have investigated other sen-
sors such as accelerometers and gyroscopes to identify gait
events (e.g., [26], [27], [28] [29], [30], [31], [32], [33], [34],
[35], [36], [37]). For an in-depth analysis of some of these
algorithms, please refer to [38], [39],but overall it has been
shown that the compared algorithms can generally accurately
extract some of the gait parameters. However, many of these
contributions, require multiple sensors (accelerometers and
gyroscopes), multiple sensor locations, or complex processing
techniques to achieve very high accuracies making them
difficult to implement in the clinical setting. Furthermore,
many of these contributions have investigated their proposed
algorithms using only young healthy subjects and/or have not
validated their results against the established gait assessment
systems. Finally, the remaining algorithms failed to identify
all of the critical temporal parameters including toe off.

To avoid the aforementioned shortcomings of the various
measurement systems, we developed a method to acquire time
estimates for heel strikes and toe-offs for both feet using
atri-axial accelerometer worn on the pelvis. An algorithm
was developed using the same principles of [40] that more
completely analyzes accelerations captured along vertical (V),
anterior-posterior (AP) and medial-lateral (ML) axes during
walking via a single accelerometer positioned over the L3
segment of the lumbar spine (e.g., [39], [41]). In this paper,
we describe this algorithm, and validate its accuracy against
the stride interval time series extracted via a motion capture
system for healthy and neurotically diseased elderly subjects.
Our results show that the typical gait parameters studied in
the literature can be accurately extracted from stride interval
time series obtained by using the proposed algorithm.

II. METHODOLOGY

The data used in the current study were collected from
35 adults who were 65 years of age or older; 14 healthy
controls (HC), 10 with Parkinson’s disease (PD) and 11
with peripheral neuropathy (PN). HC participants (4 males,
6 females) were 73.9 ± 5.70 years old with their preferred
speed equal to 1.07 ± 0.15 m/s. PD participants (7 males, 3
females) were 66.0±9.70 years old with their group averaged
preferred treadmill walking speed equal to 1.02 ± 0.18 m/s.
PN participants (5 males, 6 females) were 81.0 ± 5.00 years

old with their preferred speed equal to 1.07±0.09 m/s. Details
on characteristics of the participants have previously been
described in [41], which used the same data and considered the
utilization of various accelerometry characteristics to differen-
tiate amongst the three groups. Briefly, all individuals were
independently ambulatory and able to continuously walk for at
least 3 minutes. Primary exclusion criteria for all subjects were
musculoskeletal or cardiopulmonary conditions that would
interfere with walking. Healthy subjects with any neurological
disorders were excluded. Primary inclusion criteria were intact
vibratory sense for HCs and persons with PD (biothesiometer
reading ≤ 20), abnormal vibratory sense for persons with PN
(biothesiometer reading ≤ 40), and a minimum of 1 year
disease duration for individuals with PD. Individuals with
PD were recruited from the university’s Movement Disorder
Registry, and older adults (including those with PN) were
recruited from the university’s Claude Pepper Center Registry.
The diagnosis of idiopathic PD was made by a neurologist
using UK PD Society Brain bank criteria [42]. Participants
with PD were required to have had a Modified Hoehn and
Yahr score between 2-3 (mild-moderate disease). Out 10 PD
participants, five participants had a Hoehn and Yahr score
of 2, four participants had a Hoehn and Yahr score of 2.5.
and one participant had a Hoehn and Yahr score of 3. All
participants with PD were on a stable dosing schedule of anti-
parkinson medications for at least 3 months prior to testing,
and they were tested in their best ON state. In addition to the
exclusionary criteria stated in the manuscript, participants were
excluded if there were evidence of global cognitive impairment
(Folstein MMSE ≤ 24).

Walking trials were performed on a large custom computer-
controlled treadmill (1.2 m wide by 2 m long) with a safety
harness system. A 3-D optical motion capture system (Natural
Point, Inc) collected heel and toe trajectory data. A tri-
axial accelerometer (MMA7260Q, Freescale Semiconductor)
secured over the L3 segment of the lumbar spine measured
linear accelerations of the body (vertical (V), anterior-posterior
(AP) and medial-lateral (ML)), which were recorded using
an analog-digital converter. All data were recorded with the
same data collection computer in order to properly synchronize
the optical and acceleration data. Participants wore their own
walking shoes (no sandals, clogs, heels were permitted).
The experimenters were experienced physical therapists and
biomechanists well-versed in palpation and marker placement.
In general, all participants wore mesh or soft-sided athletic
shoes which allowed palpation of bony landmarks through the
shoes. The accelerometer was secured onto thin elastic belt,
fastened at the front of the subjects waist. A larger neoprene
lumbar support sleeve was then secured over the accelerom-
eter. Sensor placement was frequently checked/monitored
throughout data collection (between all walking conditions,
after standing up after any rest breaks). Trunk accelerations
and the motion capture system signals were sampled at 100
Hz. Trajectory data from 2 shoe markers (midpoint of proximal
interphalangeal of the first digit, and the posterior superior
aspect of calcaneous along the midline) were used to extract
gait cycle time points [43].

Treadmill familiarization and preferred speed was assessed
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prior to the start of the protocol, before marker placement. The
safety harness was used and participants started off holding
on to the treadmill handrail. While holding on we slowly
increased treadmill speed (in by 0.05 to 0.10 m/s) until a
comfortable walking speed was reported. The subject then
established a comfortable walking speed without hand support,
similar to [1]. Mindful that we were working with older adults
and individuals susceptible to fatigue (PDs), once we re-
established comfortable walking speed without hand support
the familiarization protocol was terminated. In general, this
process took 5-10 minutes.

Each walking trial began with a ramp up period, where
the subject’s walking speed was slowly increased until their
previously established preferred pace was reached. Subjects
completed a 3 minute walking trial at their preferred pace,
rested, then completed a 3 minute walking trial at a slower
speed (10% reduction from the preferred treadmill speed).

Across groups, the average usual treadmill speed was 1.06±
0.014 m/s with a range of 0.74− 1.30 m/s. Average reduced
treadmill speed was 0.95 ± 0.03 m/s with a range of 0.66 −
1.12 m/s. The total range of examined speeds was 0.66− 1.3
m/s, which is wide and representative of persons with limited
to independent community ambulation ability [44]; thus the
algorithm has potential to be used across a range of gait speeds
and clinical populations.

III. SEGMENTATION OF GAIT ACCELEROMETRY SIGNALS

In this section, we first introduce the algorithm for extraction
of heel strikes and toe-offs from gait accelerometry signals.
Secondly, we describe our approach to validate the accuracy
of the proposed algorithm.

A. Proposed algorithm

The general approach was to identify events present in the
gait accelerometry signals during walking and relate those
events to heel strikes and toe-offs on both feet. As shown in
Figure 1, such relations can be formed based on accelerations
in ML, V and AP directions. For example, the local maximum
and minimum values in the AP/V directions appear to be
temporally related to heel strikes and toe-offs (i.e., these local
maximum/minimum values appear in vicinities of temporal
events associated with heel strikes and toe offs). Similarly, as
shown in Figures 1(c) and (d), we have observed that based
on the average value of first 10 milliseconds of acceleration of
a step in the ML direction we can determine whether a person
has made a step with left or right leg.

Based on these observations, the proposed algorithm has
three stages. In the first stage, we identify possible events from
the V direction that represent potential locations of the gait
events. The algorithm initially identifies possible events from
the V signal; including the heel strikes and toe-offs. In the
second stage, potential events are processed to identify the
true toe-off events for both feet. Lastly, the third stage works
towards the accurate estimation of heel strikes from both feet
based on the initial estimates of the gait events.

In the detailed description of the algorithm, {x(n),
y(n), z(n) ∈ RN} will denote samples of gait accelerometry
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Fig. 1: Relationships between gait accelerations and stride
events: (a) local minima points in the V direction are related
to toe-offs; (b) local minima points in the AP direction are
related to heel strikes; (c) if a person stepped first with the right
foot then the first 10 ms of acceleration in the ML direction
will have a positive mean value (represented by a line with
diamonds); (d) if a person stepped first with the left foot then
the first 10 ms of acceleration in the ML direction will have
a negative mean value (represented by a line with diamonds).
Dashed lines represent events related to toe-offs/heel strikes
as identified by the motion capture system.

signals in the ML, V and AP directions, respectively. N
represents the length of these vectors representing samples of
gait accelerometry signals, and these samples were acquired
using a sample frequency fs. The proposed algorithm is not
sensitive to the selection of a sampling frequency, as long
as the sampling frequency is greater than twice the Nyquist
frequency for gait accelerometry signals (around 10-20 Hz in
typical cases) [39], [41]. Hence, the choice of the sampling
frequency in here (100 Hz) did not play a significant role.

a) Stage 1 - Identify events of interest: The goal of Stage
1 is to identify events of interest, that is, local maximum values
in the V and AP directions. To achieve this goal, we adopt the
following steps:

1) Remove any artifact related to the gravity by removing
the mean from the acquired signals:

x1(n) = x(n)− µx (1)
y1(n) = y(n)− µy (2)
z1(n) = z(n)− µz (3)

where µx, µy and µz represent the calculated mean
values for these signals.

2) Remove impulse-like artifacts unrelated to gait via me-
dian filtering:

x2(n) = Λ{x1(n),m} (4)
y2(n) = Λ{y1(n),m} (5)
z2(n) = Λ{z1(n),m} (6)
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Fig. 2: A sample signal in the V direction: (a) a raw accelera-
tion signal; (b) the signal after removing its mean component;
(c) the signal after being processed by a median filter; (d)
the signal after the amplitude normalization. The amplitude of
signals in (a)-(c) is in m/s2.

where Λ{·,m} represents an mth order median filtering
operation. In this paper, a fifth order filter is utilized.

3) Normalize the filtered signals to unity amplitudes:

x3(n) = x2(n)/max |x2(n)| (7)
y3(n) = y2(n)/max |y2(n)| (8)
z3(n) = z2(n)/max |z2(n)| (9)

Signal normalization was carried out to reduce the inter-
individual variability within groups.

4) Determine α1(k) ∈ RK representing k local maxima
values present in y3(n) under the constraint that suc-
cessive local maxima have to be at least 0.35 seconds
apart and K ≤ N , where 0.35 seconds represents a
conservative estimate of half of the stance phase during
a single stride. Figure 2 depicts that higher peaks are
followed by smaller peaks. Here, we seek to identify
stronger peaks in order to yield less false positives.

5) Determine β1(k) ∈ RK representing the time indices n
from y3(n) of k local maxima values.

6) Form a set Π representing k values for which α1(k) > 0.
The cardinality of the set will be equal to P ≤ K. Based
on the set Π, form new vectors:

α2(p) = α1(k) for k ∈ Π (10)
β2(p) = β1(k) for k ∈ Π (11)

where p = 1, .., P .
Figure 2 depicts the effects of various signal operations on

a sample signal from the V direction.
b) Stage 2 - Determining toe-offs: The purpose of Stage

2 is to accurately determine the toe-offs based on refining
β2(p) values via a closer examination of local minima values
in y3(n). The following steps need to be taken:

1) Form P sequences based on y3(n), where these se-
quences are defined as:

y
(p)
3 (q) = y3(n) for n ∈ β2(p), .., β2(p) + ς (12)

where p = 1, ..., P and ς represents a time offset. In this
paper, we used ς = 0.15 seconds (that is, 15 samples),
as the double support phase of a stride lasts for about
15% of a stride duration [45]. Therefore, our q values are
given by Q = {q : 1 ≤ q ≤ 15}. In other words, y(p)3 (q)
represent Q points around the pth maximum found in
the Stage 1.

2) For each sequence y(p)3 (q), determine t representing a
location of the minimum value for the sequence. Then,
update β2(p) to reflect the true location of toe-offs
according to the following rule:

β3(p) = β2(p) + t (13)

with 0 ≤ t ≤ ς .
3) Calculate

µ̂x =
1

L

L∑
l=1

x3(l) (14)

where L = 10 is used in this paper.
4) Based on β3(p) and µ̂x, form sequences φ(r) and ω(r)

representing the time indices of right and left toe-offs,
respectively. This can be accomplished via the following
rule:

Case I If µ̂x > 0, then

φ(r) = β3(p) for p = 2, 4, ..., P (15)
ω(r) = β3(p) for p = 1, 3, ..., P (16)

Case II If µ̂x < 0, then

φ(r) = β3(p) for p = 1, 3, ..., P (17)
ω(r) = β3(p) for p = 2, 4, ..., P (18)

where r = 1, ..., R and R < P for both cases.
Figure 3 depicts a sample signal, and the outcome of the

Stage 2 processing.
c) Stage 3 - Determining heel strikes: The purpose of

Stage 3 is to accurately determine the heel strikes based on
refining β2(p) values via the first derivative of z3(n). Figure
4 summarizes the steps of this stage. To accomplish this task,
the following steps are needed:

1) Determine w(n) representing the absolute value of the
first order derivative of z3(n):

w(n) =

∣∣∣∣ ddnz3(n)

∣∣∣∣ (19)

2) Form P sequences based on w(n), where these se-
quences are defined as:

w(p)(u) = w(n) for n ∈ α2(p)− κ, .., α2(p) (20)

where p = 1, ..., P and κ represents a time offset. Here,
we used κ = 15 samples (that is, 150 ms) which gave
us u values are given by U = {u : 1 ≤ u ≤ 15}. In
other words, w(p)(u) represents P points around a local
extremum point.
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Fig. 3: Estimating toe-offs: (a) an initial estimate of toe-off
events from the V direction; (b) refining the timing of toe-off
events; (c) toe-off events identified from acceleration signals
for the right foot; (d) toe-off events identified from acceleration
signals for the left foot.

3) For each sequence w(p)(u), determine i representing a
location of the minimum value for the sequence. Then,
update α2(p) to reflect the true location of heel strikes
according to the following rule:

α3(p) = α2(p)− i (21)

with 0 ≤ i ≤ κ.
4) Based on α3(p) and µ̂x from eqn. (14), form sequences

ψ(d) and υ(d) representing the time indices of right and
left heel strikes, respectively. This can be accomplished
via the following rule:

Case I If µ̂x > 0, then

ψ(d) = α3(p) for p = 1, 3, ..., P (22)
υ(d) = α3(p) for p = 2, 4, ..., P (23)

Case II If µ̂x < 0, then

ψ(d) = α3(p) for p = 2, 4, ..., P (24)
υ(d) = α3(p) for p = 1, 3, ..., P (25)

where d = 1, ..., D and D < P for both cases.
These three stages will produce time series (φ(r), ω(r),

ψ(d), υ(d)) representing time indices of right and left toe-offs
and heel strikes. To obtain a stride interval time series, one
would need to take the first difference of the obtained time
series points and normalize the obtained differences by the
sampling frequency used to acquire gait accelerometry signals.

B. Algorithm evaluation

To evaluate the accuracy of the proposed algorithm, we
extracted features from the stride intervals obtained using the
proposed algorithm. The extracted features are then compared
to the same features extracted from the stride interval time
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Fig. 4: Estimating heel strikes: (a) an initial estimate of heel
strike events from the AP direction; (b) refining the timing
of heel strike events; (c) heel strike events identified from
acceleration signals for the right foot; (d) heel strike events
identified from acceleration signals for the left foot.

series obtained from reflective markers using the procedure
outlined in [43], which has a mean maximal error of 11.9
milliseconds. In particular, we calculated mean stride intervals,
coefficients of variations (CoV) (e.g., [5], [46]), but other
typical stride features such right and left stances, single and
double support times and swing percentages were calculated
as well. Also, using these stride time series, harmonic ratios
(HR) (e.g., [2], [14], [47], [13], [48]) were calculated based
on the acceleration signals. These quantities were calculated
in all three anatomical directions considered in this paper from
low pass filtered acceleration data over each stride. The filter
was a second-order, zero-phase Butterworth filter with a cutoff
frequency of 30 Hz. First, we calculated the discrete Fourier
transform of the segmented data as follows (e.g., [49], [43]):

astride =

N−1∑
n=0

Cn sin(nωot+ φn) (26)

where the Cn is the harmonic coefficient, ωo is the stride
frequency, and φn is the phase. The first 20 harmonic coef-
ficients are then summed and used to calculate the harmonic
ratio, which is defined as:

HRAP and V =

〈∑20
n=2,4,6,... Cn∑19
n=1,3,5,... Cn

〉
(27)

HRML =

〈∑19
n=1,3,5,... Cn∑20
n=2,4,6,... Cn

〉
(28)

where 〈
∑
Cn/

∑
Cn〉 denotes the average ratio over all

strides. This metric allows us to quantify the step to step
asymmetry in the acceleration at the L3/L4, which has been
used as a proxy center of mass.

To test statistical significance of our results, we first exam-
ined whether there were any differences between features ex-
tracted by the algorithm and motion capture method. We con-
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TABLE I: Motion capture and accelerometry average stride intervals (seconds) as calculated from various points in the gait
cycle. † denotes statistical differences between motion capture and accelerometry values within groups. LH = Left Heel Strike;
RH = Right Heel Strike; LT = Left Toe Off; RT = Right Toe Off; E at the end of the variable name denotes estimated value
from accelerometry signals

Normal Speed Reduced Speed
HC PN PD HC PN PD

LH 1.11± 0.11 1.10± 0.07 1.14± 0.08 1.20± 0.10 1.15± 0.09 1.19± 0.09
LHE 1.11± 0.10 1.10± 0.07 1.14± 0.07† 1.20± 0.10 1.15± 0.09 1.19± 0.09
LT 1.11± 0.11 1.10± 0.07 1.14± 0.08 1.20± 0.10 1.15± 0.09 1.19± 0.09
LTE 1.11± 0.10† 1.10± 0.07 1.14± 0.07† 1.20± 0.10 1.15± 0.09 1.19± 0.09
RH 1.11± 0.10 1.10± 0.07 1.14± 0.08 1.20± 0.10 1.15± 0.09 1.19± 0.09
RHE 1.11± 0.10† 1.10± 0.07 1.14± 0.07 1.20± 0.10 1.15± 0.09 1.19± 0.09
RT 1.11± 0.10 1.10± 0.07 1.14± 0.08 1.20± 0.10 1.15± 0.09 1.19± 0.09
RTE 1.11± 0.10 1.10± 0.07 1.14± 0.07 1.20± 0.10 1.15± 0.09† 1.19± 0.09

TABLE II: Motion capture and Aaccelerometry stride interval coefficient of variation (percent) as calculated from various
points in the gait cycle. † denotes statistical differences between motion capture and accelerometry values within groups LH =
Left Heel Strike; RH = Right Heel Strike; LT = Left Toe Off; RT = Right Toe Off; E at the end of the variable name denotes
estimated value from accelerometry signals.

Normal Speed Reduced Speed
HC PN PD HC PN PD

LH 2.19± 0.56 2.06± 0.48 2.16± 0.91 2.61± 1.12 2.28± 0.54 2.43± 0.81
LHE 3.37± 0.81† 3.73± 0.77† 3.77± 0.99† 3.86± 0.99† 3.98± 0.58† 3.95± 0.89†

LT 2.32± 0.60 2.32± 0.54 2.31± 0.98 2.78± 1.14 2.56± 0.60 2.59± 0.86
LTE 3.75± 1.47† 4.37± 1.92† 3.98± 1.32† 3.32± 1.09† 3.75± 1.13† 3.85± 1.33†

RH 2.17± 0.62 2.09± 0.48 2.19± 0.89 2.59± 1.18 2.33± 0.64 2.43± 0.75
RHE 3.80± 0.64† 3.81± 1.03† 3.64± 1.03† 3.86± 1.06† 3.76± 0.47† 3.80± 1.03†

RT 2.30± 0.53 2.28± 0.56 2.34± 0.96 2.67± 1.06 2.54± 0.71 2.54± 0.79
RTE 3.36± 1.03† 3.63± 1.38† 3.84± 1.22† 3.31± 1.28† 3.75± 1.54† 3.71± 1.22†

ducted a series of paired samples t-tests to compare true and
estimated differences under each walking condition in each
of the participant groups based on disease/gender. Second, we
examined whether the said differences, if any, were different
between gender/disease groups using one- and two-way anal-
yses of variance. Finally, we examined whether any finding
obtained by comparing different participant groups/conditions
would be different if one used estimated features instead of
true features. To this end, we fitted a series of linear mixed
models with each of the features as the dependent variable;
type of value (true/estimated), participant group/condition and
their interaction as fixed effects of interest; and a participant
random effect to account for multiple measurements from the
same set of participants. We constructed appropriate means
contrasts to estimate between-group/condition differences un-
der true and estimated measurements separately, and make
comparisons between them. We used SAS R© version 9.3 (SAS
Institute, Inc., Cary, North Carolina) for all statistical analyses.

IV. RESULTS

Mean stride time intervals estimated from the accelerometry
data were similar to those calculated from the motion capture
system as shown in Table I, with the differences between the
two methods ranging between −0.5 and 2 ms (p > 0.73).
An ANOVA on the differences between the values showed
no significant effects of gait speed, group, foot, heel/toe
or any interactions. It should be also pointed out that the
average value of a mean absolute difference between the true
(motion capture) and estimated (algorithm) values was less
0.01 seconds, which is smaller than the temporal resolution

of the used instruments. As expected, the mean stride times
themselves were significantly affected by speed (p < 0.001),
with the averages for the normal and reduced speeds across
subjects being 1.11 (s.d. 0.08) and 1.18 (s.d. 0.09) seconds,
respectively. There were no effects of group, foot, heel/toe or
any interactions on the stride times.

Stride time interval variability, as measured by CoV for each
subject, was about 1.5% different between the two methods,
with the CoV from the accelerometry data being overall greater
that the CoV from the motion data as shown in Table II.
However, these numbers still represent typical ranges for CoV
values of stride time interval series. The ANOVA investigating
the impact of the independent variables showed that speed
(p = 0.001) and the interaction of speed and heel strike (or
toe-off) events (p = 0.02) had a small (< 0.3%) but significant
impact on the differences between the results obtained with the
motion capture system and the proposed method. When using
heel contact, there was no significant impact of gait speed on
the difference between the two methods. When using the toe,
speed did have an impact (p = 0.001 for within toe analysis)
on the differences. Thus, the accelerometry method resulted
in CoVs that were higher than the motion capture data; and
when using the heel contact results to define the cycles speed
had no effect on the differences between the accelerometry
method and the motion data method.

Additionally, we examined other typical stride features as
shown in Table III. Our statistical analysis has shown that any
group and sex differences are not affected by the use of the
proposed algorithm (p > 0.24).

Harmonic Ratio (HR) estimations from the accelerometry
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TABLE III: Typical stride parameters. The variables are expressed in seconds unless a variable is defined as a percentage. RS
= right stance; LS = left stance; DSRL = double support (right-left); DSRL = double support (left-right); SSR = right single
support; SSL = left single support; SPR = right swing percentage; SPL = left swing percentage. E at the end of the variable
name denotes estimated value from accelerometry signals.

Normal Speed Reduced Speed
HC PN PD HC PN PD

RS 0.74± 0.08 0.73± 0.04 0.76± 0.04 0.81± 0.08 0.78± 0.05 0.80± 0.05
RSE 0.71± 0.06 0.71± 0.04 0.72± 0.04 0.76± 0.07 0.74± 0.06 0.75± 0.05
LS 0.74± 0.08 0.73± 0.05 0.76± 0.05 0.81± 0.08 0.77± 0.07 0.80± 0.06
LSE 0.71± 0.06 0.70± 0.06 0.73± 0.06 0.76± 0.06 0.73± 0.07 0.77± 0.08
DSRL 0.19± 0.03 0.18± 0.02 0.19± 0.02 0.21± 0.03 0.20± 0.02 0.21± 0.02
DSRLE 0.16± 0.02 0.16± 0.02 0.16± 0.03 0.16± 0.03 0.16± 0.03 0.16± 0.03
DSLR 0.19± 0.03 0.18± 0.02 0.19± 0.02 0.21± 0.04 0.19± 0.02 0.20± 0.02
DSLRE 0.15± 0.02 0.15± 0.03 0.16± 0.03 0.16± 0.02 0.16± 0.03 0.16± 0.02
SSR 0.37± 0.03 0.37± 0.03 0.38± 0.03 0.39± 0.03 0.38± 0.03 0.38± 0.03
SSRE 0.40± 0.05 0.40± 0.03 0.40± 0.03 0.43± 0.05 0.43± 0.03 0.42± 0.03
SSL 0.37± 0.03 0.37± 0.03 0.38± 0.04 0.39± 0.03 0.38± 0.04 0.39± 0.05
SSLE 0.40± 0.05 0.39± 0.04 0.41± 0.05 0.43± 0.05 0.41± 0.05 0.44± 0.05
SPR 33.0± 1.83 33.5± 1.08 33.3± 1.65 33.3± 2.04 32.8± 1.12 32.6± 1.71
SPRE 35.8± 2.83 35.5± 2.59 36.2± 2.82 36.2± 2.58 35.6± 2.18 36.9± 2.14
SPL 33.4± 1.44 33.9± 1.52 33.4± 0.93 32.5± 1.51 33.3± 1.50 32.6± 1.06
SPLE 35.8± 1.81 36.6± 2.02 35.5± 2.30 36.1± 2.00 37.1± 1.96 35.6± 2.46

TABLE IV: Harmonic ratios. † denotes statistical differences between the true and estimated values within the group. E at the
end of the variable name denotes estimated value from accelerometry signals.

Normal Speed Reduced Speed
HC PN PD HC PN PD

LHML 2.24± 0.55 1.83± 0.46 1.91± 0.44 2.45± 0.67 1.88± 0.41 1.95± 0.48
LHEML 2.12± 0.52† 1.78± 0.31 1.82± 0.42† 2.26± 0.57† 1.81± 0.29 1.85± 0.45†

RHML 2.35± 0.50 1.94± 0.42 1.85± 0.46 2.44± 0.48 1.99± 0.39 1.95± 0.56
RHEML 2.13± 0.41† 1.86± 0.35† 1.80± 0.37 2.23± 0.44† 1.89± 0.29† 1.86± 0.45
LHV 3.27± 0.97 2.83± 0.38 2.72± 0.60 3.12± 0.90 2.66± 0.43 2.58± 0.56
LHEV 2.95± 0.69† 2.56± 0.22† 2.44± 0.44† 2.76± 0.61† 2.42± 0.29† 2.30± 0.38†

RHV 3.26± 0.87 3.08± 0.47 2.54± 0.48 3.05± 0.79 2.82± 0.50 2.50± 0.55
RHEV 2.81± 0.65† 2.70± 0.33† 2.38± 0.37† 2.68± 0.60† 2.54± 0.30† 2.28± 0.41†

LHAP 2.87± 0.82 2.42± 0.49 2.18± 0.49 2.65± 0.62 2.26± 0.35 2.07± 0.47
LHEAP 2.67± 0.78† 2.19± 0.42† 2.06± 0.46† 2.42± 0.52† 2.08± 0.30† 1.93± 0.40†

RHAP 2.95± 0.72 2.57± 0.55 2.12± 0.49 2.68± 0.58 2.36± 0.41 2.05± 0.43
RHEAP 2.64± 0.70† 2.29± 0.50† 2.00± 0.38 2.43± 0.52† 2.15± 0.31† 1.92± 0.36†

data were calculated using the two methods (accelerometry
and motion) to define the gait cycles. For the HR in the
ML direction, the HR was smaller for the accelerometry-
defined gait cycles compared to the motion-defined cycles.
Group (p = 0.04) and speed (p = 0.02) had a small,
but significant influence on the differences between the two
methods. For the vertical HR, there was again a bias with
the accelerometry defined cycles resulting in smaller HRs.
Speed influenced the HR for both cycle defining methods with
reduced speed having a greater HR than normal speed. The
HR in the AP direction showed similar results as the vertical
HRs, with the acceleration defined gait cycles having greater
HRs than the motion defined gait cycles and lower HRs for
reduced speed. On average, the magnitudes of HRs estimated
with the proposed algorithm were lower by 5%-10% than the
magnitudes of HRs estimated with the motion capture system.

The ability of the HR measures to distinguish between
groups were similar using the two methods to define gait
cycles. For the anteroposterior HRs, a significant difference
across groups was found for both the acceleration-defined
gait cycles and the motion-defined gait cycles (p < 0.05).
For the vertical HRs, group was not found to be significant
in either case (p > 0.05). For the mediolateral HR, the

acceleration based gait cycles did have a significant group
effect (p = 0.04), while the motion based gait cycles did not
attain statistical significance (p = 0.08). For all HR directions,
speed was found to significantly impact the HR when using
the acceleration or the motion defined cycles. Similarly, a
combination of groups and speed did not significantly impact
the HR when using the acceleration or the motion defined
cycles.

V. DISCUSSION

High agreement between the stride interval time series
obtained with the proposed algorithm and the stride interval
time series obtained with the motion capture system can be
achieved. Thus, accelerometers can be used to accurately
estimate gait cycles from treadmill walking to be used in
the analysis of various subject populations. The algorithm
extracts heel contact and toe-off from the right and left foot
directly from the accelerometry signals themselves and does
not require other additional sensors such as foot switches or
optical motion capture.

There were some small, but statistically significant dif-
ferences in the time series when comparing the two meth-
ods. Stride interval variability (as measured by the CoV)
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was overall higher when the heel contact and toe-off events
were defined by the acceleration signals. Higher CoV values
were due to occasional misidentification of heel-strike/toe-off
events, but these higher values of stride variability are still
within the previously reported ranges for these groups [4], [5],
[6]. In addition, the higher CoV values were a small bias of
between 1 and 1.5% but behaved similarly at different speeds.
When the defined time series were used to calculate the HRs,
there was also a small bias between the two methods, but
both methods resulted in harmonic ratios within the reported
ranges for similar groups [47], [13], [48]. Given the similar
behaviors in CoV and HR found in the results, we believe that
the proposed method can be very useful in the field to define
gait cycles directly from the accererometry signals. Finding
subject group differences in HR were found to be generally the
same for the two methods as well. There was a small difference
in the mediolateral HR results, but given the relatively small
patient subject sample size, this difference is not considered
practically significant.

The proposed algorithm is robust from two main points of
view. First, the reduced speed did not affect the gait event
detection with the proposed algorithm, as reduced speeds
usually introduce greater values for the average stride interval
and the stride interval variability [50]. The proposed algorithm
maintained its accuracy for both considered speeds. Second,
the algorithm accurately extracted stride intervals from gait
accelerometry signals in all three considered groups (i.e., HC,
PN and PD). The considered groups typically have very dif-
ferent walking patterns [39], [41], but the proposed algorithm
maintained any between-group differences.

Having an ability to extract stride interval time series with-
out the utilization of footswitches and/or the motion capture
system also enables us to possibly move the gait assessment
outside well-controlled conditions (e.g., a laboratory setting).
This research is the first step in such a direction. Cumber-
someness of the current acquisition techniques is avoided in
this case, as we can use a single sensor worn around a waist to
acquire needed time series. Similarly, the proposed algorithm
enables us to calculate certain gait characteristics such as
harmonic ratios [48] in real-life settings as well. Calculation
of these characteristics usually required acquisition of stride
interval time series and gait accelerometry signals simulta-
neously. However, the aforementioned cumbersomeness of
the equipment often limited researchers and clinicians in
their intents to investigate these gait characteristics outside
laboratory settings. The proposed algorithm provides us with
an opportunity to simply avoid additional sensors and acquire
only gait accelerometry signals from the L3 region.

This study used treadmill walking to validate our method
of stride cycle events, but the method should be applicable
in overground walking as well. Treadmill walking has been
shown to decrease stance phase and double support time
generally as a consequence of increased cadence (from 110ms
to 80ms for double support) [51]. However, the overall char-
acteristics of the acceleration signal are consistent and the
characteristic maximums and minimums still exist. Therefore,
any changes in stance and double support would merely affect
the timing thresholds (i.e., ς values) in Stage 2 of the algorithm

similar to varying cadence in the normal population. In fact,
the reductions in stance and double support phase would make
the threshold choices more conservative and the algorithm
more effective.

Additionally, treadmill walking allows for collection of a
large amount of continuous strides. Previous research (e.g.
[52]) indicates that more than 50 strides are required to reliably
measure parameters such as variability during normal walking,
and even more are necessary during complex tasks such as
dual-task walking, or when performing something other than
preferred walking, such as the slow condition in this current
study. While we could have collected both motion capture
data and direct accelerations during overground walking, due
to lab space constraints the strides would either have been non-
continuous, or participants would have needed to walk an oval
path and thus performing turns. Turning is a different motor
task than straight path walking and would have introduced a
major confound into the data. In order to achieve the same
amount of clean, normal walking data, both options would
require the subject to walk for an overall longer time period
which may induce fatigue. Fatigue is also known to cause
changes in gait characteristics [53]. To avoid these other
caveats, we chose to compare groups on the treadmill as
opposed to looking at non-continuous or turning conditions.

Treadmill walking has the benefit of allowing for the
collection of a large amount of continuous strides while
avoiding turning or other path alterations. However, there
are differences from overground walking. Because the tread-
mill acts as an external pacer, treadmill walking can reduce
stride time variability, particularly in clinical groups such as
Parkinsons disease who benefit from external pacing/cueing.
Walking slower than ones preferred pace has been shown to
increase variability [13], [54], [55], thus we chose a reduced
speed condition to induce variability for the dual purposes
of simulating more natural overground variability and to add
complexity to test the algorithm.

Determining the timings of toe-offs and heel strike is a
key feature of the proposed algorithm that was validated
against a motion capture system. The algorithm should be
able to detect such events for overground walking in real-life
conditions (e.g., walking on a sidewalk) as well. However,
real-life conditions can impose additional challenges (e.g.,
stopping on a red light) which are difficult to reproduce
in laboratory settings and change the overall nature of the
acceleration signal. Further investigation should be made into
starting, stopping and turning events to see if the relevant data
can be parsed, or require additional modifications.

In comparison to previous contributions (e.g., [26], [27],
[28] [29], [30], [31], [32], [34], [36], [37], [39]), the proposed
algorithm can accurately determine the timings of heel contact
and toe off events with a single accelerometer. Furthermore,
we validated our algorithm using a motion capture system.
Lastly, we examined the performance of the proposed algo-
rithm in healthy older adults and older subjects with neurolog-
ical disorders including peripheral neuropathy and Parkinsons
disease, whereas some of the previous contributions only
examined healthy young subjects, which tend to have less
obstructed gait than older adults.
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A major limitation of the current study is that the motion
capture system only allows data collection in a well-controlled
environment. Future investigations should investigate the va-
lidity of the proposed algorithm in real-world conditions
with the understanding that the motion capture data will not
be accessible in such conditions. Hence, future studies will
probably need to rely on footswitches for comparisons.

VI. CONCLUSION

An algorithm for extraction of stride cycle events from
gait accelerometry signals is described. We validated the
proposed algorithm against time series obtained via the motion
capture system using data from 35 older adults while walking
on a treadmill. Our results demonstrated that the proposed
algorithm can accurately extract heel and toe events from
gait accelerometry signals. Thus, the proposed algorithm can
be utilized to acquire stride cycle events from inexpensive
accelerometers while avoiding the limitations and costs of the
current acquisition methods.
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